ON THE FIRST n STRONGLY COMPACT CARDINALS
نویسندگان
چکیده
Using techniques of Kimchi and Magidor, we generalize an earlier result and show that it is relatively consistent for the first n strongly compact cardinals to be somewhat supercompact yet not fully supercompact. The class of strongly compact cardinals is, without a doubt, one of the most peculiar in the entire theory of large cardinals. As is well known, the class of strongly compact cardinals suffers from a severe identity crisis. Magidor's fundamental result of [Ma] shows that it is consistent for the least strongly compact cardinal to coincide with either the least measurable or the least supercompact cardinal. The result of [Al] shows that it is consistent for the least strongly compact cardinal to be somewhat supercompact although not fully supercompact. The result of Kimchi and Magidor [KM] shows that it is consistent for the class of strongly compact cardinals to coincide with the class of supercompact cardinals (except at limit points where Menas' result [Me] shows that such a coincidence may not occur) or for the first n for n £ œ strongly compact cardinals to coincide with the first n measurable cardinals. The purpose of this paper is to show that matters can be muddled still further. Specifically, we generalize the result of [Al] using the methods of [KM] and prove the following Theorem. Let V \= "K = {kx , ... , k„} with kx < k2 < ■■■ < k„ the first n supercompact cardinals". For each k g K, let K, Vt "0 = Ki(S) > <pKj(S). There is then a partial ordering P so that for each k £ K, Vp 1= " k is Received by the editors March 14, 1991 and, in revised form, November 29, 1993. 1991 Mathematics Subject Classification. Primary 03E35, 03E55. The research for this paper was partially supported by PSC-CUNY Grants 661371 and 662341 and by a salary grant from Tel Aviv University. ©1995 American Mathematical Society
منابع مشابه
On the indestructibility aspects of identity
We investigate the indestructibility properties of strongly compact cardinals in universes where strong compactness suffers from identity crisis. We construct an iterative poset that can be used to establish Kimchi-Magidor theorem from [22], i.e., that the first n strongly compact cardinals can be the first n measurable cardinals. As an application, we show that the first n strongly compact car...
متن کاملOn the Strong Equality between Supercompactness and Strong Compactness
We show that supercompactness and strong compactness can be equivalent even as properties of pairs of regular cardinals. Specifically, we show that if V |= ZFC + GCH is a given model (which in interesting cases contains instances of supercompactness), then there is some cardinal and cofinality preserving generic extension V [G] |= ZFC + GCH in which, (a) (preservation) for κ ≤ λ regular, if V |...
متن کاملTall , Strong , and Strongly Compact Cardinals ∗ † Arthur
We construct three models in which there are different relationships among the classes of strongly compact, strong, and non-strong tall cardinals. In the first two of these models, the strongly compact and strong cardinals coincide precisely, and every strongly compact/strong cardinal is a limit of non-strong tall cardinals. In the remaining model, the strongly compact cardinals are precisely c...
متن کاملExactly controlling the non-supercompact strongly compact cardinals
We summarize the known methods of producing a non-supercompact strongly compact cardinal and describe some new variants. Our Main Theorem shows how to apply these methods to many cardinals simultaneously and exactly control which cardinals are supercompact and which are only strongly compact in a forcing extension. Depending upon the method, the surviving non-supercompact strongly compact cardi...
متن کاملStrongly unfoldable cardinals made indestructible
Strongly Unfoldable Cardinals Made Indestructible by Thomas A. Johnstone Advisor: Joel David Hamkins I provide indestructibility results for weakly compact, indescribable and strongly unfoldable cardinals. In order to make these large cardinals indestructible, I assume the existence of a strongly unfoldable cardinal κ, which is a hypothesis consistent with V = L. The main result shows that any ...
متن کامل